Medikamentöse Therapie der Rhinitis allergika: Wo stehen wir, was gibt es Neues?

Zusammenfassung

Mastzellstabilisatoren

Allergische Rhinitis/Typ-I-Allergien

Die Substanzen Cromoglicinsäure und Nedocromil haben eine stabilisierende Wirkung auf die Histamin-produzierenden Mastzellen, indem sie ihren Degranulationsprozess blockieren [38]. Ein Vorteil der Wirkstoffe ist ihre gute Verträglichkeit und das geringe Nebenwirkungsprofil, so dass sie oft bei Kleinkindern und schwangeren bzw. stillenden Frauen eingesetzt werden. Ein Nachteil dieser Therapieform ist die notwendige viertel tägliche Anwendung, da die Probleme bei der Compliance mit sich bringen kann. Darüber hinaus zeigen Mastzellstabilisatoren im Vergleich zu anderen pharmakologischen Substanzen, wie Antihistaminika und GKS, eine schwächere Wirkung auf die nasalen Symptome. Diese Wirkstoffe spielen dementsprechend nur noch eine untergeordnete Rolle bei der Therapie der AR [5].

Antihistaminika

Allergische Rhinitis/Typ-I-Allergien

Antihistaminika blockieren zellständige Histaminrezeptoren und reduzieren somit die Wirkung von Histamin im Gewebe. Histamin entfaltet seine Wirkung auf die Zellen über vier Histamin-Rezeptoren (H₁, H₂, H₃ und H₄). Da für die allergische Sofortreaktion hauptsächlich die H₁-Rezeptoren verantwortlich sind, werden für die Behandlung der AR zurzeit nur H₁-Antihistaminika eingesetzt. Erste klinische Studien zur Wirksamkeit von H₂-Antihistaminika weisen jedoch ebenfalls auf einen potentiellen Nutzen bei der Reduzierung der nasalen Symptome hin [47].

H₁-Antihistaminika stehen sowohl für den systemischen als auch topischen Einsatz zur Verfügung. Der Vorteil der beiden Anwendungsformen ist, dass sie effektiv die meisten Symptome der AR, wie z. B. Rhinorrhoe, Pruritus und okulaire Symptome verbessern. Die nasale Obstruktion wird jedoch besser durch die topische Anwendungsform reduziert. Topische Antihistaminika, wie z. B. Azelastin, haben eine besonders schnell einsetzende Wirkung innerhalb von ca. 15 Minuten und sind daher besonders
sinnvoll bei akut auftretenden Beschwerden [17]. Nachtigall ist jedoch die kürzere Wirkdauer, so dass eine zwei- bis drei tägliche Applikation erforderlich ist, während die meisten oralen Antihistaminika in einer Tagesdosis eingenommen werden können. Im Vergleich zu nasalen GKS gibt es kein einheitliches Ergebnis. Während einige Studien den nasalen GKS eine besondere Wirksamkeit zuschreiben [52], zeigen andere Studien, dass beider Therapieformen eine ähnliche Effektivität aufweisen [19].

Neue und in Deutschland bislang wenig bekannte Antihistaminika sind Rupatadin, Bilastin und Olopatadin. Diese modernen Antihistaminika sollten neben der H1-blockierenden Wirkung möglichst weitere antiinflammatorische Eigenschaften aufweisen.

Ein weiteres modernes Antihistaminikum ist Bilastin als potenter H1-Rezeptor-Antagonist [41] [26, 53] [2].

Olopatadinhydrochlorid (OPH) ist ein H1-Rezeptorantagonist, der in den USA und Europa in der Darreichungsform als Nasenspray und Augentropfen für die Behandlung der allergischen Rhinokonjunktivitis zugelassen ist. Eine japanische Studie von Yamamoto et al. hatte zum Ziel, herauszufinden, ob die perorale Verabreichung ebenso zuverlässig die allergischen Beschwerden, insbesondere die Nasenatmungsbehinderung, zu therapieren vermag [50]. In die Auswertung konnten 110 Patienten mit einer allergischen Rhinokonjunktivitis auf Zedernpollen eingeschlossen werden. Die Auswertung erbrachte eine signifikante Reduktion der Symptome Niesen (p < 0,01), Rhinorrhoe (p < 0,01) und nasale Obstruktion (p < 0,05). Keinen Effekt zeigte Olopatadin in der oralen Darreichung gegenüber den Symptomen Augenrötung bzw. Augenjucken im Gegensatz zur Applikation als Augentropfen. Schwerwiegende unerwünschte Wirkungen aufgrund der Studienmedikation traten nicht auf. Somit ergibt sich mit der peroralen Olopatadin-Gabe eine mögliche Alternative zur Behandlung der allergischen Rhinitis [50].

Schlüsselwörter
- Allergische Rhinitis
- Nasale Glukokortikosteroide
- Antihistaminika
- Allergenspezifische Immuntherapie

Topische Glukokortikosteroide (GKS)

Allergische Rhinitis/Typ-I-Allergien

Interessanterweise gibt es neben diesen zeitabwandelnden Mechanismen rezeptorunabhängige Sofortwirkungen. So kann z.B. die Gefäßdilatation in der allergischen Sofortphasenreaktion bereits 5–10 min nach Applikation nasaler GKS signifikant reduziert, die allergen-induzierte Expression des Adhäsionsmoleküls E-Selektin bereits nach 30 Minuten signifikant gehemmt werden [23, 35].

Leukotrienerzeptor-Antagonisten

Allergische Rhinitis/Typ-I-Allergien

In der Behandlung der AR sind Leukotrienrezeptor-Antagonisten effektiver als Placebo und weisen eine etwas geringere Wirkstärke als orale H₁-Antihistaminika auf [40]. Lehmäki et al. untersuchten 2009 in einer randomisierten, doppel-blinden, Placebo-kontrollierten Studie an 45 Pollenallergikern mit Symptomen in den oberen und unteren Atemwegen sowie außerhalb der Atemwege (Konjunktivitis, orale Allergiesyndrome, Urticaria) die Effektivität von Montelukast als Monotherapie. Unterschiede zwischen Placebo und Verum ergaben sich hier lediglich im Verbrauch inhalativer (I2-Agonisten (LABA)) bei den Patienten mit asthmatischen Beschwerden. Eine signifikante Verbesserung der Symptome der allergischen Rhinitis und anderer allergischer Symptome konnte hier nicht festgestellt werden [29].

Cingi et al. untersuchten in einer multizentrischen, prospektiven, randomisierten, Placebo-kontrollierten Parallelgruppenstudie an 275 Patienten mit drei Behandlungsarmen über 21 Tage (A=alleinige Thera-
pie mit Fexofenadin, B=Kombination von Fexofenadin mit Montelukast, C=Kombination von Fexofenadin mit Placebo) die Effekte der Kombination gegen die Einzelsubstanzen während der Pollensaison [9]. Dabei ergab sich ein statistisch signifikanter Behandlungsvorteil für Therapieoption B (Kombination von Fexofenadin und Montelukast) sowohl auf subjektiver Ebene (Patiententagebuch) als auch anhand von objektiven Parametern (Rhinomanometrie).

Dekongestiva (α-Sympathomimetika)

Für die akute Behandlung der AR werden α-Sympathomimetika eingesetzt, welche an α-Adrenozeptoren binden und diese aktivieren. Die Folge ist eine Vasokonstriktion der nasalen Mukosa, die zu einer verringerten Füllung der Kapazitätsgefäße und somit zu einem Abschwellen der Schleimhäute führt.

Vergleich verschiedener Behandlungsstrategien

Bernstein ging in einer Metaanalyse der Frage nach, inwieweit die für die allergische Rhinitis zugelassenen Medikamente effektiv nasale Symptome behandeln, wenn sie in der zugelassenen Dosierung eingenommen werden [4]. Dabei wurden in die

Bei der Auswertung mittels Totalem Nasalen Symptomscore (TNSS) ergaben sich nach Behandlung folgende Werte für die Reduktion der Beschwerden: nasale Antihistaminika = -22,2%; orale Antihistaminika = -23,5%; topische GSK = -40,7%; Placebo = -15,0% (intermittierende allergische Rhinothorax) bzw. orale Antihistaminika = -51,0%, topische GSK = -37,3% und Placebo = -24,8% (persistierende allergische Rhinothorax).

Zusammenfassend ergibt sich somit, dass die GSK in der Therapie der AR am effektivsten sind; diese sind auch bei der persistierenden AR mit Erfolg anzuwenden, wobei orale Antihistaminika hier in einigen Fällen effektiver sind.

Anwendung von Rhinologika bei Kindern

Neue Fixkombination

Eine Weiterentwicklung und Verbesserung der heutigen pharmakologischen Therapieansätze für Patienten mit allergischer Rhinothorax ist notwendig, da trotz der zahlreichen vorhandenen Therapie Möglichkeiten bei vielen Betroffenen die Symptome nicht ausreichend gebückt werden können. Studien zeigen, dass etwa 40% der Patienten eine Kombinationstherapie mit verschiedenen Präparaten anwenden [7, 10], obwohl der zusätzliche Nutzen eines zweiten Präparates in vielen Studien nicht belegt worden konnte [1, 13]. Demgegenüber besteht heute die Standardtherapie des Asthma bronchiale in einer inhalativen Fixkombination eines langwirksamen β-Mimetikums mit einem topischen Steroid.

Kürzlich konnte auch bei der allergischen Rhinothorax für eine neue Fixkombination mit veränderten pharmakologischen Eigenschaften eines nasalen GSK (Fluticasonpropionat) und eines nasalen Antihistaminikums (Azelastin) eine höhere Wirksamkeit bezüglich der Linderung der Symptome nachgewiesen werden, als für die Gabe der einzelnen Wirkstoffe [8, 16, 32]. Diese Kombination beruht auf der initialen Studie von Ratner et al., die zwei verschiedene Nasensprays von Azelastin und Fluticasonpropionat anwendeten [39]. Nachdem diese Studie erfolgreich war, konnte durch die Veränderung der pharmakologischen Eigenschaften dieser Präparate und Kombination der zwei Wirkstoffe in einem gemeinsamen Nasenspray die Wirkung sogar noch gesteigert werden [8, 16, 32]. Diese neue Rezeptur (MP29-02) lindert alle nasalen Symptome signifikant stärker als die Monotheorie mit nasalem GSK oder Antihistaminikum [8, 16, 32]. So konnte in der Studie von Melzer et al. gezeigt werden, dass eine Behandlung mit MP29-02 im Vergleich mit Fluticasonpropionat zu einer 39% besseren Reduzierung der gesamten nasalen Symptome führte [32]. Bei den individuellen Symptomen konnte MP29-02 insbesondere bei der nasalen Obstruktion eine signifikant bessere Wirkung als die einzelnen Monotheorien erzielen [32]. MP29-02 reduzierte signifikant effektiv den nasalen Gesamt-Symptom-Score als Azelastin oder Fluticasonpropionat (je weils p<0,001) [8]. Bei den individuellen Symptomen (nasale Obstruktion, Pruritus, Rhinorrhoe und Niesreiz) erwies sich MP29-02 den Monotherapien gegenüber auch bei Patienten mit schwerer AR überlegen [8]. Ähnliche Ergebnisse wurden in der Meta-Analyse von Carr et al. erhalten. Hier reduzierte MP29-02 ebenfalls signifikant effektiv die gesamten nasalen Symptome als Azelastin oder Fluticasonpropionat (je weils p<0,001) [8]. Bei den individuellen Symptomen (nasale Obstruktion, Pruritus, Rhinorrhoe und Niesreiz) erwies sich MP29-02 den Monotherapien gegenüber auch bei Patienten mit schwerer AR überlegen [8]. Darüber hinaus trat die Verbesse-
rung der Symptome früher auf als bei der Therapie mit den einzelnen Wirkstoffen (bis zu 5 Tage eher als bei Fluticasonpropionat und bis zu 7 Tage eher als bei Azelastin) [8, 30]. Auch trat bei der Therapie mit MP29-02 eine vollständigere Verbesserung ein, so dass bei einem von 8 Patienten ein kompletter/nahezu kompletter Rückgang der Symptome beobachtet werden konnte [30]. Insgesamt wurde MP29-02 gut vertragen. Die häufigsten Nebenwirkungen waren Kopfschmerzen (3,1%), Dysgeusien (2,1%) Erosionen der Mukosa (1,5%) und Epistaxis (1,5%) [32]. Das Nebenwirkungsprofil unterschied sich dabei nicht wesentlich von denen der Monopräparate. Dysgeusien traten unter Azelastin sogar mehr als dreimal häufiger (7,2%) auf als unter MP29-02. Insgesamt brachen nur 0,5% (Monotherapien) bis 1,5% (MP29-02, Placebo) der Patienten die Studie aufgrund einer Nebenwirkung ab [32]. Aufgrund der positiven Ergebnisse schlussfolgerten die Herausgeber des Journal of Allergy and Clinical Immunology, dass dieses Präparat zum Medikament der Wahl für die Behandlung der allergischen Rhinitis werden könnte [30]. Der Wirkstoff ist auch in Deutschland zur Behandlung der allergischen Rhinitis zugelassen.

Allergenspezifische Immuntherapie

Allergische Rhinitis/Typ-I-Allergien

In der deutschen Leitlinie [22] wird formuliert, dass eine Indikation zur SIT dann besteht, wenn das verursachende Allergen nicht gemieden werden kann, oder die Medikation nicht ausreichend wirksam ist.

Andere Voraussetzungen sind:

- Sensibilisierung gegen ein Aeroallergen und Nachweis der klinischen Relevanz; für perennial Allergen ist meist eine spezifische Provokation (nasal, konjunktival, ggf. bronchial) unabdingbar.

- Die Wirkung der SIT muss für die zu behandelnde Erkrankung belegt sein; dies ist in der Regel aufgrund der Studienanlage für die allergische Rhinokonjunktivitis und für das allergische Asthma der Fall.

- Verfügbar sein muss ein geeigneter Allergenextrakt; gefordert wird der Wirksamkeitsnachweis in einer klinischen Studie. Wie weiter oben dargestellt wird die Auswahl hier künftig leichter werden, da für alle neu zugelassenen Präparate entsprechende Studien vorgeschrieben sind.

- Voraussetzung für eine erfolgreiche SIT ist die Bereitschaft des Patienten, die Therapie über einen Zeitraum von 3 Jahren regelmäßig durchzuführen.

Als Faustregel kann die Immuntherapie empfohlen werden, wenn Symptome bereits seit mindestens
zwei Jahren bestehen und Allergenkarenz nicht möglich oder nicht ausreichend ist.

Unter den o.g. Voraussetzungen hat die SCIT in einer Metaanalyse bereits nach dem ersten Therapiejahr eine überlegene Effektivität bezüglich einer Symptomminderung im Vergleich zur Pharmakotherapie [31].

Die meisten Nebenwirkungen bei der SCIT sind Lokalreaktionen, wie Rötungen oder Schwelungen. Diese unerwünschten Reaktionen sind jedoch nur leicht bis mittelschwer und mithilfe der Gabe von Antihistaminika relativ leicht zu behandeln [22]. Trotzdem sollte der Patient nach der Injektion noch mindestens 30 Minuten lang in der Praxis beobachtet werden [22]. Bei der SLIT treten die meisten Nebenwirkungen ebenfalls lokal auf und sind vornehmend milder Ausprägung [22].

Behandlung mit Anti-IgE-Antikörpern

In Deutschland ist Omalizumab, ein monoklonaler Antikörper gegen IgE, seit 2005 unter dem Handelsnamen Xolair® zur Behandlung des schweren Asthma bronchiale für Patienten ab 12 Jahren zuge lassen. Seit 2009 gilt die erweiterte Zulassung für Omalizumab zur Behandlung von Kindern ab 6 Jahren. Die Wirksamkeit dieser neuen Behandlungsform ist inzwischen ausreichend belegt. So konnten z.B. Niven et al. in einer randomisierten, open label Studie über 1 Jahr an 164 Patienten die Wirksamkeit von Omalizumab in der Therapie des moderaten bis schweren, therapieresistenten, unkontrollierten allergischen Asthmata nachweisen [34]. Geprüft wurde die Rate der jährlichen Asthma Exazerbationen, der jährlichen Asthma bedingten behandlungsbedürftigen Ereignisse, Veränderungen der FEV1, subjektive Asthma Symptome nach dem „Wasserfallen score“ und die Lebensqualität mittels dem „mini Asthma Quality of Life Questionnaire“ (Mini-AQLQ). 115 Patienten erhielten zusätzlich zur Standardtherapie (Behandlung mit inhalativen Glukokortikoiden und langwirksamen β2-Agonisten: ICS/LABA) Omalizumab, 49 Patienten lediglich die Standardtherapie mit ICS und LABA. In der Omalizumab-Gruppe war die Rate der jährlichen Exazerbationen um 59%, die Rate der jährlichen Asthma-bedingten behandlungsbedürftigen Ereignisse um 40% gegenüber der Standardtherapie-Gruppe verringert. Auch die FEV1, die subjektiven Asthma Symptome nach dem „Wasserfallen score“ und die Lebensqualität waren in der Omalizumab-Gruppe signifikant besser [34].

Ledford konnte in einem Review der bisherigen Studienergebnisse belegen, dass Omalizumab in Kombination mit ICS oder ICS und LABA deutliche Vorteile in der Therapie des unkontrollierten Asthmas bei 60% der Patienten bringt [28]. Omalizumab reduziert 19–75% der Exazerbationen. Lokale Nebenwirkungen traten in 2% der Fälle auf und waren generell nicht therapiebedürftig. In 0,2% der Fälle kam es zu systemischen Nebenwirkungen. Wenn Hochrisiko-Patienten behandelt werden, ist die Therapie mit ICS, LABA und Omalizumab kosteneffektiv gegenüber der ohne Omalizumab häufiger auftretenden Notwendigkeit zur Intervention bei Exazerbation [28].

Vor dem Hintergrund des pathophysiologischen Wissens um die Schlüsselrolle von IgE in der allergischen Entzündungskaskade sind eine Reihe weiterer Indikationen zu überdenken. Gerade bei der Behandlung der Rhinitis allergica, vor allem in Kombination mit einer allergenspezifischen Immuntherapie (SIT), scheint Omalizumab eine überlegenswerte Therapiealternative.

Auch Kopp et al. verglichen 2009 die Therapie mit Omalizumab und SIT mit PLACEBO in einer doppel-blind, randomisierten Studie an 130 Patienten über 18 Wochen. Bewertet wurden hier vor allem die Symptomlast, der Verbrauch von Rescue Medikation, die Asthma Kontrolle (mittels dem „Asthma Control Questionnaire“), die Asthma bezogene Lebensqualität und die Rhinokonjunktivitis bezogene Lebensqualität. Die Kombinationstherapie verbesserte die Symptomlast um 39% und auch die
Asthma-Kontrolle und die Asthma- und Rhino-
konjunktivitis bezogene Lebensqualität signifikant. Der Verbrauch an Rescue Medikation ging nicht sig-
nifikant zurück, allerdings bewerteten 76,5% der Patienten den Erfolg der Kombinationstherapie gegenüber nur 46,1% in der SIT und Placebo-Grup-
pe als gut [25].

Fazit für die Praxis

- **Nasale Glukokortikosteroide stellen zur Zeit die erste Wahl bei der Therapie der allergi-
schen Rhinitis dar.**

- **Neue Antihistaminika sind auf dem Markt, die neben der H1-blockierenden Wirkung weite-
re antinflammatorische Eigenschaften aufweisen.**

- **Ein neues Wirkprinzip, welches die Gabe von Glukokortikoid und Antihistaminum in einer pharmakologisch veränderten Rezeptur als Fixkombination vereint, stellt eine erfolgs-
versprechende Alternative zu den heutigen Therapieoptionen der allergischen Rhinitis dar.**

- **Eine allergenspezifische Immuntherapie soll-
te vor allem bei Pollenallergikern immer dann erwogen werden, wenn das verursachende Allergen nicht ausreichend gemieden wer-
den kann.**

Literatur

1. Aoki R. (2000) Clinical benefits of combination treatment with montelazo-
ne furoate nasal spray and loratadine vs monotherapy with montelazone furoate in the treatment of seasonal allergic rhinitis. Am Allergy Asthma
Immunol 100: 264–271.

2. Bochet C., Kwa P., Sanquer F. et al. (2000) Comparison of the efficacy and safety of budesonide 30 mg vs desloratadine 5 mg in seasonal allergic rhinitis pa-
tients. Allergy 64: 150–165.

413–426.

ply 189.

azelastine with fluticasone for the treatment of allergic rhinitis. J Allergy

agonsists as concomitant therapy in allergic rhinitis. Laserscope 130:
1718–1722.

managed care: a retrospective claims data analysis. Ann Allergy Asthma

akuast on nasal congestion in patients with seasonal allergic rhinitis in an

12. Deutsche Dermatologische Gesellschaft, Deutsche Gesellschaft für
Allergologie und Klinische Immunologie, Deutsche Gesellschaft für Kinder-

controlled trial comparing fluticasone propionate nasal spray in mono-thera-
py, fluticasone plus cetirizine, fluticasone plus montelukast and cetirizine

sodium cromoglicate on itch and flare in human skin induced by intrader-
mal histamine: a randomised double-blind vehicle controlled intra-subject
design trial. BMC Res Notes 4: 47.

15. Friedmann P.S., Palmier R., Tan E. et al. (2007) A double-blind, placebo-
controlled trial of montelukast in adult atopic eczema. Clin Exp Allergy 37:
1536–1540.

controlled study of azelastine and fluticasone in a single nasal spray del-

ecodynamic study of onset of action and efficacy. Curr Med Res Opinion:

18. Interdisziplinäre Arbeitsgruppe ”Allergische Rhinitis” Der Sektion Hno

al antihistamines in the treatment of allergic rhinitis. Ann Allergy Asthma

with omalizumab in children with seasonal allergic rhinitis undergoing spe-

pie (Hyposensibilisierung) bei IgE-vermittelten allergischen Erkrankungen.
Allergo J: 508–537.

koesteroid in der Therapie der allergischen Rhinitis. Teil 1: Pathophysiologie,
molekulare Grundlagen. HKO 60: 611–617.

